
Journal of Engineering Mathematics, Vol. 13, No. 2, April 1979 
© 1979 Sijthoff & Noordhoff International Publishers - Alphen aan den Rijn 
Printed in the Netherlands 

173 

Analytical and numerical results for the non-stationary 
rotating disk flow 

H. SCHIPPERS 

Philips Research Laboratories, Eindhoven, The Netherlands* 

(Received September 5, 1978) 

SUMMARY 
This paper deals with the time-dependent flow due to an infinite rotating disk. The Navier-Stokes equations 
are transformed by Von Kfirmfin's similarity approach. The resulting equations have been studied both 
numerically and analytically for two cases: (1) the flow due to a disk whose angular velocity abruptly changes 
sign, and (2) the oscillating disk flow. Some numerical results are compared with the outcome of the analysis. 

1. Introduction 

In the present paper the time-dependent flow caused by an infinite rotating disk is investigated. 

Problems of this kind have received much attention in the literature. Most of the solutions 

found are of  the Von K~rn~n class, describing the stationary flow. Von K~m(m found in 1921 

that the equations of motion were accessible for similarity solutions, i.e. the radial and tangential 

velocities vary linearly with radius r, whereas the axial velocity depends only on the distance z 

to the disk. The present paper is restricted to discussing this category of solutions. 

The time-dependent problem has been studied both numerically and analytically. Solutions 

of  the former type have been obtained by Pearson ([1], [2]), Florent et al. ([3], [4]), Bodonyi 

and Stewartson [5] and Homsy and Hudson [6]; they all used finite difference techniques. Ana- 

lytical solutions are found in the literature in the form of series expansions. Riley [7], Benney 

[8] and Rosenblat [9] have examined the flow caused by a disk oscillating in an infinite medium. 

For a given angular velocity I2 cos6ot of the disk they developed a solution in the form of a 

power series in terms of the dimensionless parameter e = [2/~o. Rosenblat and Benney examined 

the high-frequency flow (e < <  1); Riley also studied the low-frequency case (e > >  1). 

Benton [10] has studied the flow caused by an impulsively starting disk in an infinite 

medium. For the velocity field he gives series expansions in terms of  the angle of rotation ~2t. 

In the present paper two cases are considered: (1) the intermittently rotating disk, i.e. the 

flow due to a rotating disk whose angular velocity abruptly changes sign, and (2) the oscillating 

disk for several regimes of  the parameter e. The following subjects will be discussed. In Section 

2 the differential equations and boundary conditions for this type of problems are presented. 
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174 H. Schippers 

Section 3 deals with two numerical computational methods, which are based on Zandbergen's 
and Dijkstra's numerical approach [11]. In Section 4 the analytical results are extended and 
compared with the numerical solutions. The results of the work described here allow a few con- 
clusions to be drawn, which are summarized in Section 5. 

The stimulus for the present study came from the interest of Philips Research Laboratories 
in an industrial application of intermittently rotating disks. 

2. Basic equations 

The basic equations for the incompressible, viscous flow are the Navier-Stokes and continuity 
equations, which can be reduced by means of the Von K~rmfin similarity transformations to 

F t = F z z - H F  z - F  2 + G  ~ - K ,  

G t =Gzz - HG z - 2FG, 

2 F + H  z =0 ,  

(2.1) 

(2.2) 

(2.3) 

where (F, G, H)  and K are a measure of  the velocity vector and radial pressure gradient respec- 
tively in a cylindrical polar coordinate system (r, ¢, z). The dimensionless time t is a measure 
of the angle of  rotation. A fourth equation serves to determine the axial pressure gradient after 
the velocity components have been found. This equation has been omitted. The boundary con- 
ditions are given by the no-slip conditions. Assuming that an infinite disk rotates in the plane 
z = 0, they are: 

F(0, t) = H(0, t) : 0, G(0, t) = g(t). (2.4) 

In our applications the function g(t) is a block function for the intermittently rotating disk and 
cos(e -1 t) for the oscillating disk. Further we need conditions at infinity. Assuming that the 
radial and azimuthal components of  the velocity tend to zero (here only axial inflow is possible), 

we get: 

F ( ~ ,  t) = G(oo, t) = 0. (2.5) 

It can be shown that K ( t )  = G 2 (~ ,  t). 
This problem involves two relevant length scales: 

1. Von K~rm~n layer thickness (v/~)  -~ , where v is the kinematic viscosity, 
2. Stokes layer thickness (v /w)  ~ . 

It will be apparent that the oscillating disk flow is characterized by the parameter e = ~2/~, 
which determines the ratio of the Stokes layer to the Von Khrm~n layer thickness. 
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Non-stationary rotating disk f low  17 5 

3. Numerical approach 

Numerical methods have been used, which are based on the approach given by Zandbergen and 

Dijkstra [ 11 ] for the stationary rotating disk flow. Finite difference techniques are applied to 

problem formulation (2.1) - ( 2 . 3 ) .  In calculations the boundary conditions (2.5) are applied at 

a finite value z = z m : 

F(2m)=G(gm)=O. 

The choice o f z  m depends on the required accuracy. 

If  we want to resolve the flow structure near to the disk with a limited number o f  mesh 

points, it appears to be necessary to transform the z-coordinate in a suitable way. Let us map 

[0, z m ] into the new range [0, 1 ] by  means o f  a mapping ¢. Thus z = ~(x), where x is an element 

o f  the new range. We denote the inverse function o f  ~ by ~0. 

The mesh covering the new range 0 < x ~< 1 is uniform with the stepsize Ax and the mesh 

points x] are given by 

A x  = l / N ,  x j  = j A x ,  j = O(1)N. 

In cases where the angular velocity o f  the rotating disk is abruptly changed it is advisable to 

introduce another scale o f  time s = s(t), taking into account the discontinuity of  the velocity o f  

that disk. 
Let FLk be the value o f F ( x ,  s) at mesh point x =x] and at the time s = s  k. The fight-hand 

sides of  (2.1) - (2.2) are now discretized by central differences at s = s k. The non-stationary 

term is approximated by two different backward-difference formulae: 

= (Yj,  - Fj, k _ , ) / a s ,  

F s = (3F],  k - 4F], k _ ,  + Fl, k _ 2 ) / ( 2 A s ) ,  

(3.1) 

0.2) 

in which As = sic - s k_ 1 is the uniform time step. 
Using this approach and formula (3.1) we get a system o f  finite difference equations, which 

is called the fully implicit method (F.I.). The system which arises after applying formula (3.2) is 

referred to as the three-point backward implicit method (B3). The disadvantage of  the F.I. 

method is that it is o f  order O(As, A x  2 ). The B3 method is o f  the order O(As 2, A x  2 ), but diffi- 

culties arise in starting it: at the point s = s~ we do not have values at s = s ,.  In our numeri- 

cal calculations we use the F.I. method to start B3. 

If  we choose the F.I. method for solving (2.1) - (2.2) and integrate (2.3) using the trape- 

zoidal rule we get a system of  finite difference equations for the quantities Hi, k,  Gj, k and FLk. 
In the equations below we have taken: 

T(s)  = d t  (s) ,  
a s  

P ( x )  = q , . ( z (x ) ) ,  Q(x) = ~zz(Z(X)), 
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and from the eqs. (2.1) - (2.3) we thus obtain: 

Pj(Hj, k - H i _ 1 ,  k) + Ax(t~_I ,  k + F L k ) = 0 ,  for/ '= I(1)N, 

As _ 2GLk + Gj l ,k )  + %,k  -- Gj, k - I  -- Tic ~ (P~(%+l,k 
Lxx 

+ T (QJ - P f l j ,  D (Cj+ ~, ~, - Cj_ 1, ,,) - 2Zx~Fj,  kCj, D = 0, 

for/' = I ( 1 ) N -  1, 

As 
FJ, lc-FI,  k-1 - Tk ~ (P/(5+l, k-2 Fj, k + F j - l , k ) +  

+ -~ (Qj-PjHj ,  k)(Fj+I,k  - F j_I ,k ) -Ax2F2] ,  k + Ax2GI, k)=O, 

for/' = l ( 1 ) N -  1. 

(3.3) 

(3.4) 

(3.5) 

A method of  solving this system of 3N - 2 non-linear algebraic equations by means of Newton 
iteration has been given by Zandbergen and Dijkstra [11 ]. This approach leads to a linear 
system of equations for the Newton corrections. The bandwidth of the system is seven and the 
matrix routine takes advantage of this property. 

4. Single-disk problems 

In this section the analytical results of Benton [ 10] and Benney [8] are extended to allow us to 
judge the numerical results. Two cases are discussed: in Section 4.1. the intermittently rotating 
disk flow and in Section 4.2 the oscillating disk flow. 

4.1. Intermittently rotating disk 
The flow induced by an impulsively started disk was considered by Benton [10], who was given 
exact representations of the non-steady velocity field by power series in the angle of rotation 
[2t. 

Using the technique of matched asymptotic expansions we give in Section 4.1.1 series for 
the flow induced by a rotating disk, whose angular velocity abruptly changes sign. In Section 
4.1.2 the numerical results found with the approach given in Section 3 are compared with the 
outcome of the series expansions. 

4.1.1. Analytical results 
Matched asymptotic expansions are used to study the flow induced by a rotating disk whose 
angular velocity abruptly changes sign. Just before the change of direction of  disk rotation at 
time t = 0 the stationary Von Kfirm~n flow prevails. Thus the initial conditions are: 

F(z,O) = ~(z),  G(z,O) = ~(z),  H(z,O) = i f ( z ) ,  
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Non-stationary rotating disk flow 177 

where F, G and H are given by the Von K~rm~n solution. The disk is now made to rotate in the 
opposite sense. A time-dependent inner layer then grows at the surface of the disk. Furthermore 
there is still the Von K~rm~n boundary layer. This, in fact, makes it necessary to split the velo- 
city components, i.e., F(z, t)= if(z)+ F(z, t). Similar relations apply to G and H and sub- 
stituting these into (2.1) - (2.3) we obtain: 

? t  = F z z  - H Y z  - H f f  z - ffIFz - (F= + 2/~ff) + (~2 + 2(~(~), (4.1) 

Gt = C'zz - HGz - HG-z - fflGz - 2(FG + FG + FG), (4.2) 

B'z + 2F= 0. (4.3) 

The initial and boundary conditions are respectively: 

P(z, o) = g(z,  o) = o) = o . . . . .  
and 

(4.4) 

J~(0, t) = ~'(00, t) = ~/(0, t) = G(~, t) = 0, 

G ''re,x,, t) = "~ 0 for t = 0, 
- 2  if t >  0. 

(4.5) 

The coordinate in the inner layer is given by ~/= z/2~/t and the velocity components are defined 
as P0/, t) = if(z, t), G(~, t) = G(z, t) and/~(r/, t) = H(z, t). Just after the reversal of the disk rota- 
tion the inner layer is much thinner than the Von Karman layer, and therefore we can approxi- 
mate H, G and ff by their Taylor series expansions. After substitution we get the following 
equations: 

Hn + 4X/~'F = 0, (4.6) 

{ 8rlata/2 } (4.7) Grin + 2rfTn - 4tGt = 2X/7 2n2t/~'(0) + -~ + O(t 2) 8 n + 

+ 4t/¢<G'(0) -2~2  t / l " (0)+  0(t3/2)} + 2x/THG n + 8tFG + 
{_ 8 t3 n } q- 8tG r/%//-n"(0) - 2r/2t - -~ G'(0)r/3 + O(t 2) + 

4 r/at3/2 J~"(O) q- O(t2)}, + 8tF{1 + 27 x/t'G'(0) - 5 

/~rm + 27//~n -4 t /T t=  2 2r/2t/l"(0) + ~ rl3t 312 +O(t  2) + (4.8) 

+ 4 t / t  { _ 1  l~,(O)_2rlVrf_4~,(O).o2t+O(tal2)}+ 2 V/~-~/~n + 4tF2 + 

8 8,(0)n3t3/~ + O( t2 )}_  4t~2 + + 8tP{-rl~7-H"(O) - 2ri2t - 3 

4 n3ta/2 ff'(O) + O(t2)}.  - 8tG {1 + 2r/x/q-G'(0) - 5 
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From the literature the values of/ t"(0) and G'(0) are known to be respectively-1.02046 and 
-0.61592. Following Benton [10] we can perform series expansions involving powers of vri" 
with coefficients which are functions of the inner variable 7 :  

G(7, t) = Go(7 ) -I- t 3/2 G 1 (7) + t2 G2 (7) + . . . .  

[:(7, t) = tF1 (7) + t3/2 F2 (7) + tS/2 F3 07) + . . . .  

/](7, t) = -4 t  1t2 {till (7) + t3/2H2(7) + tS/2H3(7) + . . . }  

The difference from the Benton series is caused by the presence of the Von K~rm~n solution in 
the equations of motion (4.1) and (4.2) Substitution of our series into (4.6) - (4.8) leads to a 
hierarchy of ordinary differential equations for Go, FI, HI,  etc. In [12] we determined exact 
solutions for these functions: 

Go0?) = -2  erfc 7, 

F1(7) =4  + (1 +272)erfc7---~-n 7e ~ + 

{ l e n ~ }  2 - 8 7/erfc 7 x/~ - 4 erfc 7, 

1 /~"(0) 72e + (1073 - 97)erfc 7 G,(7) = ~ 

The functions Hi and H2 are ob{ained by a single integration of F, and F2 respectively. In 
particular we obtain: 

4 ( 1  2 ) { (  2 ( l+72)e -n2  } H1 (7) = -~ + 37 + 273)erfc 7 - - - ~  + 

8 { -~n  - T e r f c T } -  3---~-ne erfcT+ 3 \1 r /  e r fcx/~7+ 3 ~ ~_,7~ ~ 8 -,7 ~ 8 [_2'~ ~ 

4 -n~ 8 ( 2  V ~ + I  ) 
- 4 7  erfc7 + - ~ - e  + " ~ n  

H 2 ( 7 ~ , ~ ) ~  - 3 8'(0). 
4 

Proceeding with the determination of F3(7) we encounter a major difficulty: it appears to be 
impossible to choose the integration constants such that F3(~)= 0. This points to a perturba- 
tion of the outer flow, which is related to the axial velocity at the edge of the inner layer, i.e.: 

- -32[2 2 )  t312 3d,(0) t 2" ~ ( ~ , t ) ~  ~--~-\-~ - v'~-+ + (4.9) 
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This mechanism is responsible for the change of the outer Von K~rm~n layer. Hence there must 
be an outer expansion describing this process. The coordinates in the outer layer are z and t. 
Introducing outer layer components of velocity/:/, G and F, we see that the expansions in this 
layer are determined by the condition that the inner must be matched to the outer solution for 
small values of  t. Therefore it is necessary to start the expansion for/:/with a term t 312 , while 

/F and G begin with t 512 : 

[l(z, t) = tal2 hl (z) + t2 h2 (z) + tSl2 ha(z) + t3 h4 (z) + 0(t712), 

G(z, t) = tSl2gl (z) + tag2 (z) + tT/2ga (z) + O(t* ), 

F(z, t) = tsl2A (z) + t3f2 (z) + tV2f3 (z) + O(t4). 

Substitution of these series into (4.1) - (4.3) leads to the following system of equations for 

hi,  f~, gl, etc.: 

h; = 0, (4.10) 

5 f ,  = _h , f f z ,  (4.11) 
2 
5 .~ g, = _h ,Oz  ' (4.12) 

h~ = 0, (4.13) 

3/"2 = -h2Fz ,  (4.14) 

3g= = -h2G z, (4.15) 

h~ = - 2 f l ,  (4.16) 

f3 = f ;  Hf ;  - haffz - 2Ffl + 2Gg,,  

H - 

ga =gx - Hg', - haff" z - 2Fgl -- 2Gf, ,  

hl = - 2 A .  

(4.17) 

(4.18) 

(4.19) 

To verify our numerical results we are interested in H(oo, t) and Hzz(O, t). Therefore we only 
determine hi,  f l ,  h2, fz, ha and h4. The boundary conditions at z = 0 follow from the match- 
ing of the inner to the outer expansion. From (4.9) it will be clear that 

_ 3 2 ( 2  h , ( z ) -  - 

h2 (z)-- 3~'(0). 

From (4.1 1) and (4.14) it is easily seen that 
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-32 (2 - X/~ + 1) /7zz(z), f,(z) = 15--~ 

__p 

/~(z)  = -~ a (O)H.,(z).  

The boundary conditions Fa (0) = 0 and F3 (co) = fl (0) determine F3 (*7) to be 

F3(.7) = H,,(0) (17 115) { 5~r 48 (4.7s + 20.7a + 15~/)erfc ,7 + 

_(4.74 + 18.72 + 8)_~_n e-n~ } _ "~'32/]"(0) ( 2 )  -~ 

11 31 37 ) - 2 + 8/7"(0) 2"0 *7s + -~  *7a + 7= *7 ~ eric *7 + 
( ) 16(1' 1)  

5 4 *73+ *7+ 
+ 8/]"(0) 12 3rr 8 - 

1 (11.74 499 18~) } 
5-6 + -iT6 .7~+ - -  e - ' ~  

erfc V~*7 + 

erfc 17 + 

+8/],,(0)~1(11.7a~_0 +'~.763 ) e2C 

(1 + e /t 

1 { ( 4 7 2 ) * 7 2  + ~  ~ + 

A single integration ofF3 (*7)gives 

-32 -,, 
H3(.7~0o)--, 15X/~_.H (0) ( 2 _ x / ~ + l )  .7+/],,(0) ( 3 3 5 2 9 )  

192 ~ " 

From the matching of the inner to the outer expansion and taking account ofeqs. (4.16)and 
(4.19) it follows that 

64 
ha(z) = 15---~ 

h4(z)=-G'(O)/Tz(z)+/7"(0) (291r 335)48 

These results allow us to calculate Hzz(O, t) and H(~, t) as: 

Hzz(0, t) = /]"(0) + - ~  - 1 + 2G'(0)t  + 

( 2 6 3 1 5 7 )  /]"(O)t2 + O(tSl2), 
+ ' 16 31r 

(4.20) 
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32 ( 2 -  x~-+  2 ) t a D + 3 G , ( O ) t 2 +  (4.21) H(~ ,  t) =/ t (~ , )  3 x/rr 

+ H " ( 0 )  ( 291t ~ 5 )  t 3 + O ( t ' 2 ) "  

4.1.2. Numerical results 

Numerical results are obtained using the approach given in Section 3. The main errors are: (a) 
cut-off error, which arises from fixing infinity at a certain value, and (b) discretization errors. 
The fully implicit method (F.I.) yields O(As, Ax 2 ), while the B3 method results in O(As 2 , Ax 2 ). 

In order to take account of  the diffusion of the inner layer into the Von Kfinn~n layer we 
have scaled time by t = s 2 . The range 0 <<. z <<. z m (with z m = 10) is divided into N uniform 
meshes. The shear stress at the disk (i.e. Hzz ) is determined by numerical differentiation. 

In the intermittently rotating disk flow we are interested in the results just after the reversal 
of the disk. The F.I. method is used and the numerical results are extrapolated. 

The effect of the spatial Richardson extrapolation (based on Az 2) is illustrated in the foi-  

l x/~. 
lowing table, which presents results obtained with As = 

TABLE 1 

Effect o f  the spatial Richardson extrapolation for the inter- 
mittently rotating disk flow using the F.L method. 

AZ Hzz(O, lr/8) Extrapolation 

1/4 -0.575847 
1/8 -0.650645 -0.675578 
1/16 -0.673255 -0.680792 -0.681139 

T6 1 X/~ .  We get three The same can be done with the results obtained with As = x / ~ ,  -~ 

extrapolated values for Hzz (0, n/8). These results are used for illustrating the Richardson extra- 
polation in time (based on As) as is shown in Table 2: 

TABLE 2 

Effect o f  Richardson extrapolation in time for the intermit. 
tently rotating disk flow using the F.L method. 

As Hzz (O, n /8 ) Extrapolation 

1 -ff 2 x ~  -0.659946 

1 -0.673630 -0.687314 16 
1 2 x ~  -0.681139 -0.688648 32 -0.689093 
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In Table 3 the extrapolated results for some values of t are presented and compared with the 
outcome of (4.20). 

TABLE 3 

Comparison between numerical and analytical results Hzz(O, t) 
for the intermittently rotating disk flow using the F.L 
method. 

Time Numerical Analytical Difference 

0 - 1.0200 - 1.0205 0.0005 
n/32 -0.7506 -0.7528 0.0022 
~r/8 -0.6891 -0.6967 0.0076 
9 ~r /32 -0.7550 -0.7739 0.0189 
n/2 -0.8613 -0.8543 0.0070 
25 n[32 -0.9467 -0.7554 0.1913 

Inspection of this table reveals a discrepancy of O(At) between the numerical and analytical 

results for small values of  t, which requires further investigation. 

It should be remarked that the analytical results have been obtained by adding terms of dif- 

ferent order O(t  I/2 ), O( t )  and O(t  2 ). For a particular case the various terms are: 

Hzz(O) 1 st term 2 nd term 3 rd term Hzz(O , ir/8) 

-1.0205 0.7728 -0.4838 0.0347 -0.6967 

In order to investigate the quality of the fully implicit method we also compare the numer- 

ical results for the axial inflow with the outcome from (4.21), in which/t(oo) = -0 .8845 .  This 

comparison is given in Table 4, in which the numerical results were obtained after both a 

double Richardson extrapolation in space and time. 

TABLE 4 

Comparison between numerical and analytical results H(**, t) 
for the intermittently rotating disk flow using the F.L 
method. 

Time Numerical Analytical Difference 

~r/32 -0.8493 -0.8531 0.0038 
~r]8 -0.7402 -0.8975 0.1573 
9 lr/32 -0.6645 - - 
n/2 -0.6811 - - 
25 lr/32 -0.7530 - - 

From this table it is remarkable that there is only agreement for t = ~r/32. This was to be 

expected from (4.21), because of  the magnitude of  the term of O(t  3) with respect to H(~o, t) 

- H(oo). It can be seen that the series is only valid for small values of t. 
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-0-5 

J 

0 0.5 1.0 

Figure 1. Response of the shear Hzz(O, t) to the impulsively altered direction of disk rotation at t=  0. 
- -  numerical, - . . . .  (4.20). 

- I . 0  

-0 .885 f 

0 
0 0.5.__.~,. f.O 

(Jz /2rr) '/2 
Figure 2. Response of the axial inflow H(,o, t) to the impulsively altered direction of disk rotation at t = 0. 
- -  numerical, - . . . .  (4.21). 

The results given in Tables 3 and 4 are displayed in Figures 1 and 2 respectively, in which 

the scale o f  time is a quadratic one. It is no tewor thy  that  a new steady state is achieved within 

about  one revolution of  the disk. Summarizing it can be concluded that  for small values of  t the 

numerical results are in reasonable agreement with the outcome of  the analysis. 

4.2. Oscillating disk 
The problem of  a disk performing torsional oscillations at an angular velocity o f  [2 cos cot has 

been studied by  Rosenblat  [9], Benney [8] and Riley [7]. Rosenblat  and Benney have given 

solutions in the form of  asymptot ic  expansions for the high-frequency case, while Riley con- 

fiders the low-frequency case too.  In Section 4.2.1 we give some results o f  these papers and ex- 

tend the work done by  Benney. In Section 4.2.2 the numerical results are compared with the 

outcome o f  the series expansions. 
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4.2.1. Analytical results 
The basic equations (2.1) - (2.3) ate rewritten to  make them identical with those of  Rosenblat, 

Benney and Riley. We introduce new coordinates which depend on the parameter e = ~2/~o. 

Putting t '  = e- i t  and z '  = (2e)-l12z this parameter appears in the basic equations. Furtherlet 

H(z, t)=-2(2e)Zl2h(z ', t'), F(z, t)=hz,(Z', t') and G(z, t)=g(z',  t '). After substitution and 

omitting the accents we obtain: 

1 2 
hz t = "2 hzzz + e.(2hhzz _ hz + g2), (4.22) 

1 
gt = ~ gzz + 2e(hgz - hzg). (4.23) 

The boundary conditions for h and g are 

h = h '  = 0, g = cos(t) at z = 0; 

h',g--,O for z - - , ~ .  
(4.24) 

We shall first consider the high-frequency case ( e < <  1) and then the low-frequency case 

(e > >  1). 

(a) High-frequency case (e < <  1) 
Rosenblat has given a solution of  (4.22) - (4.23) for small e in the form of  series expansions: 

h(z, t)= ~ enhn(Z, t) and g(z , t )= ~ engn(Z, t). (4.25) 
n = O  n = O  

He shows that ho =gl = 0 and determines h 1, go and g2 explicitly: 

- Z  
go(z, t) = e cos(t - z), (4.26) 

1 ( 1 - 2 z - e  -2z) ~-~ hi(z, t) = - ~ - { (2 - vr2-)cos(2t + rt/4) + (4.27) 

- 2e-X/TZcos(2t - x / 2 z  + rr/4) + x/~e-2Zcos(2t - 2z + *r/4)}. 

Further  he calculates the derivative 0g2/(Oz) as: 

ag----L2 (0, t) = -0 .060  cos(t) + 0.012 cos(3t) - 0.262 sin(t). 
0z 

(4.28) 

From (4.27) it can be seen that for large values o f  z the axial velocity increases linearly with z 

and the radial component o f  velocity h z is not  zero, so that the boundary condition h'(oo) = 0 

is not  satisfied. Riley has shown that the series expansions (4.25) are suitable for describing an 

oseiUatory inner layer near the rotating disk. Outside this layer there is a secondary flow. Using 
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matched asymptotic expansions Riley was able to f'md a steady solution representing the first 
term of an outer expansion. The second time.dependent term can easily be resolved with the 
multiple scaling technique that Benney used for this problem. He determined series expansions 
valid throughout the region of flow. The coefficients in the series expansions (4.25) are not 
only dependent on z and t, but also on x = ez, expressing the dependence on the secondary 
outer flow. Both Benney and Riley show that ho is only zero in the inner layer, but not in the 

outer layer. It is found that ho has to satisfy 

hi" - 2hg + 4hohg  = 0, 

ho(0) = 0, hg(0) = 1/4, 

where the accents denote differentiation with respect to x. 
In particular Benney and Riley have calculated: 

hg(0) = -0 .207  and ho(~).= 0.265. 

Instead of (4.27) Benney finds the following solution for h 1 (z, x, t): 

hi(z,  x, t) = ao + ale  -2z + a2 cos(2t + zr/4) + 

+ a3e-X/-2Zcos(2t - x/-fz + zr/4) + a4e-2Zcos(2t - 2z + rt/4), 

(4.29) 

F t t  f t  F I Ft 

ao + 4hoao - 4hoao + 4hoao = 0 

1 ag (o)  = ag (oo) = 0, ao (0 )  = -  

where ho is equal to the solution of (4.29). In [ 12] we determined the solution to be 

,, , 1 h '  ao(x) =ho(O)ldcho(x) + ho (x )} -  -~ o(x). 

In particular the axial inflow at infinity is found to be 

h ( o ° ' t ) = h ° ( ° ° ) + e {  h'g(O)h°(°°)+ -~6 (V~ ' -2 )cos (2 t  +7r/4)} +O(e2) .  (4.30) 
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and 

where ao . . . . . .  a4 are functions of x = ez, for which Benney derived appropriate differential 
equations and boundary conditions. For verifying our numerical results we are only interested 

1 (x /~--  2) and we extend his in h l(oo, t). From Benney's paper it is easily seen that a2 =-~-~ 

work by determining the function ao, which follows from 
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(b ) Low-frequency case (e > >  1} 
The disk slowly changes its direction o f  rotation. Riley has shown that the main flow is repre- 

sented by Von Khrm~in's classical rotating disk solution. He gives a series solution in powers of  

e -I . In particular, Riley calculates the axial inflow as 

H(oo, t) = Icos(t)[ -~ ~-0.88444 + 0.1184 e -l tan(t)/lcos(t) 1 + O(e-2)}. (4.31) 

This formula is only valid for e > >  1 and not in the neighborhood of  a turning point, i.e. cos(t) 

--0.  

4.2.2. Numerical results 
Numerical periodic solutions are obtained for both the high- and low-frequency flow due to an 

oscillating disk, i.e. in the former case e = 0.1 and in the latter one e takes the values 10 and 

100 respectively. 

(a) High-frequency case {e = 0.1) 
To start our numerical methods we take the state of  rest as an initial condition and eliminate 

the starting effects by calculating a sufficient number o f  periods. The accuracy of  these 

methods is illustrated by a comparison between the numerical and analytical solutions of  the 
oscillatory boundary layer characterized by the derivative Gz(O, t). We first describe the meth- 

od used to obtain the numerical results: infinity is fixed at z m = 8 and the range 0 ~< z ~< 8 

is covered with 80 and 160 uniform meshes successively. In both cases Gz(O, t) is determined 

by numerical differentiation. In the F.I. method the time step At = en/16, err/32, while in the 

B3 method it is err/8 and en/16. In [12] it was shown that a single Richardson extrapolation can 

be performed on these results, first in space and then in time. These extrapolations are given in 

Table 5, together with the outcome of  Rosenblat's analytical formulae. 

TABLE 5 

Comparison between numerical and analytical results for Gz(O, 0 

Disk velocity Rosenblat F.I. B3 

1.0 2.2371 2.2439 2.2394 
0.924 1.2138 1.2193 1.2143 
0.707 0.0055 0.0087 0.0044 
0.383 -1.2041 -1.2035 -1.2067 
0.0 -2.2305 -2.2323 -2.2341 
-0.383 -2.9170 -2.9220 -2.9212 
-0.707 -3.1591 -3.1656 -3.1632 
-0.924 -2.9202 -2.9273 -2.9237 

Comparing the F.I. and B3 methods we should prefer the latter. In order to get comparable 

results the F.I. method needs a smaller time step ( A t =  eTr/32, err/16) than the B3 method 

(At = err/16, err/8). For the oscillatory boundary layer problem both methods give results which 

agree with the analytical solutions. If  we want to calculate numerically the outer flow we en- 

counter some difficulties. In the first place the outer flow is a secondary one which is slowly 
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generated from the state o f  rest by the oscillatory boundary layer, and hence the numerical 

results for the outer  flow slowly converge. In the second place, Rosenblat  shows that  the outer  

boundary  layer is o f  thickness O(e  -1 ) times the thickness o f  the inner layer. In the case e = 0.1 

the inner layer exists in the region 0 < z < 3 and therefore it is necessary to fix infini ty at 

z m = 32. If  we do not  change the number  of  mesh points,  the step size Az becomes too large in 

the inner layer. Transforming the z-axis by  z(x)= 8x + 24x 3 we have a sufficient number  o f  

mesh points both  in the inner and in the outer  layer. In Table 6 we compare the analytical and 

numerical results obtained with Ax = 1/160, At  = e~r/16. The calculations were s topped after 

the disk had performed 80 periods. In Figure 3 the axial inflow is given as a function o f  the 

number  o f  periods. F rom this figure it can be seen how the outer  flow is built  up in time. After  

80 periods the axial inflow differs about 8% from the analytical solution, represented by the 

dashed line in Figure 3. This discrepancy is probably mainly due to cutting off  the calculations. 

TABLE 6 

Comparison between analytical and numerical axial 
inflow, after the disk has performed 80 periods. 

Disk velocity Analytical Numerical 

1.0 -0.231 -0.214 
0.924 -0.233 -0.216 
0.707 -0.236 -0.219 
0.383 -0.237 -0.220 
0.0 -0.236 -0.219 
-0.383 -0.233 -0.216 
-0.707 -0.231 -0.214 
-0.924 -0.230 -0.213 

From this table we see that  the fluctuations in H(z m) are in good agreement with the time- 

dependent  behaviour o f  (4.30). 

- 0 . 2 3 6  

- - 0 . 2 0  
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Figure 3. 
e =0.1. - -  
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- - - - -~  k 

Dependence of the axial inflow H(=, 2k,r) on the number of periods for the high-frequency case 
numerical, - . . . .  Benney. 
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(b)  Low-frequency case (e = 10, 100) 

In this section the numerical results are compared with the outcome o f  Riley's  solution (4.31). 

We fLX infinity at z m = 16 because from Zandbergen and Dijkstra [11 ] it is known that with this 

value a sufficiently accurate classical rotating disk solution can be obtained for our application. 

In the case e = 10 results were obtained using both the fully implicit  and the 3-point back- 

ward method.  In [ 12] results are given for H(Zm, t) obtained with Az = 0.2, 0.1 and A t = err[ 16, 

e~r]32. After  Richardson extrapolat ion has been applied to these results we infer that  the B3 

method with the step sizes used produces ~ 3 significant digits for H(Zm, t). The extrapola- 

tions o f  both  methods  are given in Table 7, together with the outcome from (4.31). 

TABLE 7 

Comparison between numerical and analytical results for H(Zm, t) 
for the case e = 10. 

Disk velocity Riley F.1. B3 

1.0 -0.8844 -0.9025 -0.8923 
0.924 -0.8450 -0.8616 -0.8541 
0.707 -0.7296 -0.7556 -0.7483 
0.383 -0.5009 -0.5824 -0.5681 
0.0 - -0.3608 -0.3241 
-0.383 -0.5933 -0.2863 -0.3062 
-0.707 -0.7578 -0.6467 -0.7297 
-0.924 -0.8552 -0.8648 -0.8667 

Comparing the numerical results o f  the B3 method  with Riley's  solution, it  is clear that e = 10 

is not  large enough in the sense o f  Riley. This is confirmed by  the results for e = 100, as shown 

in Table 8. These numerical results were obtained using the B3 method with Az = 0.1 and 

A t  = err/32. 

TABLE 8 

Comparison between numerical and analytical results for H(Zm, t) for the case e = 100. 

Disk velocity Riley B3 Disk velocity Riley B3 

1.0 -0.8844 -0.8837 0.0 - -0.1917 
0.924 -0.8496 -0.8491 -0.383 -0.5517 -0.5466 
0.707 -0.7423 -0.74 24 -0.707 -0.7451 -0.7451 
0.383 -0.5425 -0.5459 -0.924 -0.8506 -0.8500 

The dependence of  the axial inflow on the angular velocity o f  the disk is p lo t ted  in Figure 4 

for the case e = 10. The dashed curve represents Riley's  solution (4.31), while the solid curve is 

an interpolat ion o f  the B3 method given in Table 7. The results for the quantities Gz(O , t) and 

Hzz(O, t)  are displayed in Figures 5 and 6 respectively. 
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Figure 4. Dependence of  the axial inflow H(oo, t)  on the disk velocity in the low-frequency case e = 10. 
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Figure 5. Dependence of  the shear Gz(0, t) on the disk velocity (e = 10). numerical, - . . . .  Riley. 
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5. Conclusions 

In this paper the t ime-dependent  flow due to an infinite rotating disk has been discussed. Two 

cases have been considered. In the former case of  the intermit tent ly  rotating disk the technique 

of  matched asymptot ic  expansions was successfully used. The formation o f  the inner expansion 

runs parallel to the series expansions given by  Benton [10]. This approach leads to a hierarchy 

of  ordinary differential equations. After  some equations have been solved the difficulty is en- 

countered that  the conditions at infinity cannot be fulfilled. This, in fact, makes it necessary 

to form an outer  expansion describing the changing of  the outer  Von K~rm~n flow. Just after 

the reversal o f  disk rotat ion the analysis agrees reasonably with the numerical results obtained 

by  using the fully implicit  method.  

From our investigations on the oscillating disk in an infinite medium we conclude that the 

three-point  backward and fully implicit  method produce numerical results which are in good 

agreement with the analysis given by Rosenblat [9], Benney [8] and Riley [7]. It is also found 

that  the B3 method converges with time one order o f  magnitude faster than the F.I.  method.  

In the li terature ([4], [ 11 ]) multiple solutions to the problems of  steadily rotating disk(s) in 

the Von K~rm~n class are found. Considering our numerical results we recommend the use of  

the three-point  backward method for investigating the stability of  these solutions, which has 

been performed in [ 13 ] for the solution of  the single-disk problem. 
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